

12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING

PART B

Edited by KRIST V. GERNAEY, JAKOB K. HUUSOM AND RAFIQUL GANI

COMPUTER-AIDED CHEMICAL ENGINEERING, 37

12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING

&

25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING

This page intentionally left blank

COMPUTER-AIDED CHEMICAL ENGINEERING, 37

12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING

PART B

Edited by

Krist V. Gernaey, Jakob K. Huusom and Rafiqul Gani

Department of Chemical and Biochemical Engineering Technical University of Denmark DK-2800 Lyngby, Denmark

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1B, UK

Copyright © 2015 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice

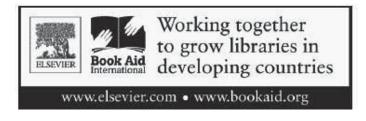
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress


ISBN (Part B): 978-0-444-63577-8 ISBN (Set): 978-0-444-63429-0

ISSN: 1570-7946

For information on all Elsevier publications visit our web site at store.elsevier.com

Printed and bound in Great Britain

14 15 16 17 10 9 8 7 6 5 4 3 2 1

Contents

Life cycle simulation for a process plant based on a two-dimensional co-simulation approach	
Mathias Oppelt, Gerrit Wolf, Leon Urbas	935
On the process of building a process systems engineering ontology using a semi-automatic construction approach Canan Dombayci, Javier Farreres, Horacio Rodríguez, Edrisi Muñoz, Elisabet Capón-García, Antonio Espuña, Moisès Graells	941
Graphical processing unit (GPU) accelerated solution of multi- dimensional population balances using high resolution finite volume algorithm Botond Szilagyi, Zoltan K. Nagy	947
Development of computer aided modelling templates for model re-use in chemical and biochemical process and product design: import and export of models Marina Fedorova, Gregor Tolksdorf, Sandra Fillinger, Günter Wozny,	
Mauricio Sales-Cruz, Gürkan Sin, Rafiqul Gani	953
BiOnto: An Ontology for biomass and biorefining technologies Nikolaos Trokanas, Madeleine Bussemaker, Eirini Velliou, Hella Tokos, Franjo Cecelja	959
Linking process, electrical and logical connectivity for supported fault diagnosis	065
David Dorantes Romero, Tone-Grete Graven, Nina F. Thornhill	965
An interactive framework for building and analysing models of urban energy systems K. Kuriyan	971
Model-based analysis of waste management systems through a natural language approach	
Vassilis Magioglou, Elisabet Capon-García, Sara Badr, Antonis Kokossis	977

vi

Enterprise-wide scheduling framework supported by knowledge management	
Elisabet Capón-García, Edrisi Muñoz, José M. Laínez-Aguirre, Antonio Espuña, Luis Puigjaner	983
Knowledge management to support the integration of scheduling and supply chain planning using Lagrangian decomposition Edrisi Muñoz, Elisabet Capón-García, Jose M. Laínez-Aguirre, Antonio Espuña, Luis Puigjaner	989
An ontological approach to integration of planning and scheduling activities in batch process industries Marcela Vegetti, Gabriela Henning	995
Constructing an ontology for physical-chemical processes Heinz A Preisig	1001
Contributed Papers T-4: Process and Product Synthesis-Design	
Improved design strategies for flexible hydrogen networks Chuei-Tin Chang, Che-Chi Kuo	1007
An integrated reactive distillation process for biodiesel production Eduardo S. Perez-Cisneros, Ricardo Morales-Rodriguez, Mauricio Sales-Cruz, Tomás Viveros-García, Ricardo Lobo-Oehmichen	1013
A sequential algorithm for the rigorous design of thermally coupled distillation sequences José A. Caballero, Juan A. Reyes-Labarta, Ignacio E. Grossmann	1019
Discovery of new zeolites for H ₂ S removal through multi-scale systems engineering	
Tingting Liu, Eric L. First, M. M. Faruque Hasan, Christodoulos A. Floudas	1025
Optimization of a fusel oil separation system using a dividing wall column	
José de Jesús Mendoza – Pedroza, Juan Gabriel Segovia – Hernández, Álvaro Orjuela – Londoño, Salvador Hernández	1031
Silane production through reactive distillation with intermediate condensers	
J. Rafael Alcántara – Avila, Hugo Alberto Sillas – Delgado, Juan Gabriel Segovia – Hernández, Fernando I. Gómez – Castro, Jorge A. Cervantes - Jauregui	1037
Optimal production of furfural and DMF from algae and switchgrass Mariano Martín, Ignacio E. Grossmann	1043
CO ₂ as feedstock: A new pathway to syngas <i>Flavio Manenti</i>	1049

Contents vii

Design and optimization of intensified non-sharp distillation configurations	
C. E. Torres Ortega, K. Stricker, M. Errico, BG. Rong	1055
Deterministic global optimization of multistage melt crystallization processes in hydroformylation Christian Kunde, Achim Kienle	1061
Design and economic evaluation of alternatives to effluents treatment on biodiesel production from soybean oil and palm oil <i>André F. Young, Fernando L. P. Pessoa, Eduardo M. Queiroz</i>	1067
Synthesis of transcritical ORC-integrated heat exchanger networks for waste heat recovery Cheng-Liang Chen, Po-Yi Li, Hui-Chu Chen, Jui-Yuan Lee	1073
Efficiency comparison of different design schemes of reactive distillation process for ethyl lactate production from fermentation-derived magnesium lactate Boonpradab Dangpradab, Panarat Rattanaphanee	1079
Tailor-made green diesel blends design using a decomposition-based computer-aided approach Li Yee Phoon, Haslenda Hashim, Ramli Mat, Azizul Azri Mustaffa	1075
A mathematical programming targeting method to select treatment technologies ahead of design Athanassios Nikolakopoulos, Antonis Kokossis	1003
Optimal structure synthesis of ternary distillation system Hiroshi Takase, Shinji Hasebe	1097
Optimization and analysis of chemical synthesis routes for the production of biofuels Douglas Allan, W. Alex Marvin, Srinivas Rangarajan, Prodromos Daoutidis	1103
Design and economic evaluation of coal to synthetic natural gas (SNG) process Bor-Yih Yu, I-Lung Chien	1109
Water networks synthesis for industrial parks involving inter-plant allocation	
Lin-lin Liu, Jian Wang, Jian-ping Li, Jian Du, Feng-lin Yang Energy-saving design and control of a hybrid extraction/distillation system for the separation of pyridine and water Yi-Chun Chen, I-Lung Chien	1115 1121
Alternative hybrid liquid-liquid and distillation sequences for the biobutanol separation M. Errico, E. Sanchez-Ramirez, J. J. Quiroz-Ramìrez, J. G. Segovia-	
Hernández, BG. Rong	1127

viii Contents

1133
1139
1145
1143
1157
1163
1169
1175
1181
1187
1193

Contents

Optimal design of microfluidic platforms for diffusion-based PCR for "one-pot" analysis of cells	
Jordan Crow, Luke E. K. Achenie, Chang Lu, Sai Ma, Despina Nelie Loufakis, Zhenning Cao, Yiwen Chang	1199
A systematic methodology for optimal mixture design in an integrated biorefinery Lik Yin Ng, Viknesh Adniappan, Nishanth G. Chemmangattuvalappil, Denny K. S. Ng	1205
A systematic visual approach to ionic liquid design for carbon dioxide capture Fah Keen Chong, Nishanth G. Chemmangattuvalappil, Dominic C. Y. Foo, Mert Atilhan, Fadwa T. Eljack	1211
Intensification of C5 separation process by heat integration and thermal coupling Hsiao-Ching Hsu, San-Jang Wang, John Di-Yi Ou, David Shan Hill Wong	1217
Conceptual design of post-combustion CO ₂ capture processes - packed columns and membrane technologies Mathias Leimbrink, Anna-Katharina Kunze, David Hellmann, Andrzej Górak, Mirko Skiborowski	1223
Natural gas to liquid transportation fuels and olefins (GTL+C2_C4) Onur Onel, Alexander M. Niziolek, Christodoulos A. Floudas	1229
Life-cycle assessment principles for the integrated product and process design of polymers from CO ₂ Niklas von der Assen, Mathias Lampe, Leonard Müller, André Bardow	1235
Optimization-based methodology for wastewater treatment plant synthesis – a full scale retrofitting case study	
Hande Bozkurt, Krist V. Gernaey, Gürkan Sin An integrated framework for controllability assessment and solvent selection in post-combustion CO ₂ capture processes Theodoros Damartzis, Athanasios I. Papadopoulos, Panos Seferlis	1241 1247
Using product driven process synthesis in the biorefinery Alexandra Kiskini, Edwin Zondervan, Peter Wierenga, Edwin Poiesz, Harry Gruppen	1253
Integrating expanders into sub-ambient heat exchanger networks Chao Fu, Truls Gundersen	1259
Water free XTL processes: is it possible and at what cost? Xinying Liu, Bilal Patel, Diane Hildebrandt	1265

X Contents

Energy and yield evaluation of an alcohols and hydrocarbons production plant using Rh-based catalysts with different promoters <i>Júlio C. C. Miranda, Gustavo H. S. F. Ponce, Harvey Arellano-Garcia, Rubens Maciel F., Maria R. Wolf M.</i>	1271
Computer-aided process analysis of an integrated biodiesel processes incorporating reactive distillation and organic solvent nanofiltration <i>Kathrin Werth, Kolja Neumann, Mirko Skiborowski</i>	1277
A thermodynamic targeting approach for the synthesis of sustainable biorefineries Bilal Patel	1283
A sustainability driven methodology for process synthesis in agro-food industry	
Jochem Jonkman, Jacqueline M. Bloemhof, Jack G. A. J. van der Vorst, Albert van der Padt	1289
Evaluation of dimethyl carbonate and ethylene glycol production from biomass	
Chayanit Choomwattana, Aksornchan Chaianong, Worapon Kiatkittipong, Pichayapan Kongpanna, Suttichai Assabumrungrat	1295
Simulation of carbon-dioxide-capture process using aqueous ammonia <i>Akrawin Jongpitisub, Kitipat Siemanond, Amr Henni</i>	1301
Energy efficient bioethanol purification by heat pump assisted extractive distillation Anton A. Kiss, Hao Luo, Costin Sorin Bildea	1307
Process design of a multi-product lignocellulosic biorefinery Aristide Giuliano, Massimo Poletto, Diego Barletta	1313
MINLP optimization model for water/wastewater networks with multiple contaminants	
Kittichai Pungthong, Kitipat Siemanond	1319
Design of separation processes with ionic liquids Worawit Peng-noo, Kusuma Kulajanpeng, Rafiqul Gani, Uthaiporn Suriyapraphadilok	1325
Systematic screening of fermentation products as future platform chemicals for biofuels Kristen Ulonska, Birgitta E. Ebert, Lars M. Blank, Alexander Mitsos,	
Jörn Viell	1331
From fed-batch to continuous enzymatic biodiesel production Jason Price, Mathias Nordblad, John M. Woodley, Jakob K. Huusom	1337
Feed flexibility of CH ₄ combined reforming for methanol production Benjamín Cañete, Nélida B. Brignole, Carlos E. Gigola	1343

Contents xi

Process alternatives for second generation ethanol production from sugarcane bagasse Felipe F. Furlan, Roberto C. Giordano, Caliane B. B. Costa, Argimiro R. Secchi, John M. Woodley	1349
Simulation study of heat transfer enhancement due to wall boiling condition in a microchannel reactor block for Fischer-Tropsch synthesis Krishnadash S. Kshetrimayum, Park Seongho, Jong Ikhwan, Na Jonggeol	
Jonggeol, Han Chonghun	1355
CO ₂ vs biomass: Identification of environmentally beneficial processes for platform chemicals from renewable carbon sources <i>André Sternberg, Holger Teichgräber, Philip Voll, André Bardow</i>	1361
Design and optimization of intensified quaternary Petlyuk configuration	
Massimiliano Errico, Pietro Pirellas, Ben-Guang Rong, Juan Gabriel Segovia-Hernández	1367
Techno-economic analysis of power and hydrogen co-production by an IGCC plant with CO ₂ capture based on membrane technology Daniele Sofia, Aristide Giuliano, Massimo Poletto, Diego Barletta	1373
Synthesis of water treatment processes using mixed integer programming Mariya N. Koleva, Eleftheria M. Polykarpou, Songsong Liu, Craig A. Styan, Lazaros G. Papageorgiou	1379
Viability of technologies for CO2 capture and reuse in a FPSO: Technical, economic and environmental analysis Bruna C. S. Lima, Ofélia Q. F. Araújo, José L. de Medeiros,	10,7
Cláudia R. V. Morgado	1385
A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design S. Murat Sen, James A. Dumesic, Christos T. Maravelias	1391
Process design and optimization of integrated shale gas process for green chemicals production Chang He, Fengqi You	1397
Value-added chemicals from microalgae: A sustainable process design using life cycle optimization Jian Gong, Fengqi You	1403
The effect of charge composition on the optimal operational parameters of a batch extractive distillation process	
Laszlo Hegely, Peter Lang	1409

xii Contents

VPPD Lab -The chemical product simulator Sawitree Kalakul, Rehan Hussain, Nimir Elbashir, Rafiqul Gani	1415
Synthesis of flexible heat exchanger networks integrated with reconfigurable control design Lautaro Braccia, Patricio Luppi, Maximiliano García, Marta S. Basualdo	1421
Computer-aided approach for designing solvents blend for herbal phytochemical extraction Siti Nuurul Huda Mohammad Azmin, Nor Alafiza Yunus, Azizul Azri Mustaffa, Sharifah Rafidah Wan Alwi, Lee Suan Chua	1427
Evolutionary algorithm for de novo molecular design considering multi-dimensional constraints Robert H. Herring III, Mario R. Eden	1433
Data mining and regression algorithms for the development of a QSPR model relating solvent structure and ibuprofen crystal morphology <i>Shounak Datta, Robert H. Herring III, Mario R. Eden</i>	1439
Designing reactants and products with properties dependent on both structures Vikrant A. Dev, Nishanth G. Chemmangattuvalappil, Mario R. Eden	1445
Conceptual design of an internally heat-integrated reactive distillation column based on thermodynamic and hydraulic analysis Zixin Lin, Weizhong An, Yawei Xu, Jianmin Zhu	1451
Carbon capture and utilisation: Application of life cycle thinking to process design Rosa Cuellar-Franca, Ioanna Dimitriou, Pelayo Garcia-Gutierrez, Rachael H. Elder, Ray W. K. Allen, Adisa Azapagic	1457
Topology optimization for biocatalytic microreactor configurations Inês P. Rosinha, Krist V. Gernaey, John M. Woodley, Ulrich Krühne	1463
Design of hybrid heat-integrated configuration for indirect reactive distillation processes Kuo-Chun Weng, Hao-Yeh Lee	1469
Optimization of ionic liquid recycling in Ionic Liquid-based Three Phase Partitioning processes Enrique Alvarez-Guerra, Angel Irabien	1475
Optimization of the Integrated Gasification Combined Cycle Using Advanced Mathematical Models Bongani Mvelase, Thokozani Majozi	1481
2010 gorive Introducto, I wowa with interjour	1 101

Contents xiii

Contributed Papers T-5: Process Dynamics, Control and Monitoring

Nonparametric soft sensor evaluation for industrial distillation plant Andrey Torgashov, Konstantin Zmeu	1487
Comparing temperature difference control schemes for dividing-wall distillation columns	
Yang Yuan, Haisheng Chen, Jieping Yu, Kejin Huang	1493
A decentralised multi-parametric model predictive control study for a domestic heat and power cogeneration system <i>Nikolaos A. Diangelakis, Efstratios N. Pistikopoulos</i>	1499
A control strategy for periodic systems - application to the twin-column MCSGP Maria M. Papathanasiou, Fabian Steinebach, Guido Stroehlein, Thomas Müller-Späth, Ioana Nascu, Richard Oberdieck, Massimo Morbidelli, Athanasios Mantalaris, Efstratios N. Pistikopoulos	1505
Design of multiparametric NCO-tracking controllers for linear dynamic systems Muxin Sun, Benoît Chachuat, Efstratios N. Pistikopoulos	1511
A performance-oriented robust framework for the online model-based optimization and control of (fed-) batch systems Francesco Rossi, Flavio Manenti, Gintaras V. Reklaitis, Guido Buzzi-Ferraris	1517
Raman-based advanced control of an absorption desorption system Erik Esche, David Müller, Michael Maiwald, Günter Wozny	1523
A comparative study between neural networks (NN)-based and adaptive-PID controllers for the optimal bio-hydrogen gas production in microbial electrolysis cell reactor <i>Azwar M. Yahya, Mohd A. Hussain, A. K. Abdul Wahab, M. F. Zanil</i>	1529
Reaction monitoring of cementing materials through multivariate techniques applied to in situ synchrotron X-ray diffraction data Alessandra Taris, Massimiliano Grosso, Mariarosa Brundu, Vincenzo Guida, Alberto Viani	1535
Multivariate fault isolation using lasso-based penalized discriminant analysis Te-Hui Kuang, Zhengbing Yan, Yuan Yao	1541
Flexible operation of CO2 capture processes integrated with power plant using advanced control techniques Ana-Maria Cormos, Mihaela Vasile, Mircea-Vasile Cristea	1547
Modified minimum variance approach for state and unknown input estimation Yukteshwar Baranwal, Pushkar Ballal, Mani Bhushan	1553
I UNICSHIYAH DAHAHIYAH, I ASHNAH DAHAH, MAHH DHUSHAH	1223

xiv

A new software development methodology for controllability analysis of forced circulation evaporator system Afshin Sadrieh, Parisa A. Bahri	1559
A nonlinear quasi-unknown input observer for the chemostat droop model Alexander Schaum, Thomas Meurer	1565
PAT for reactive crystallization process optimization for phosphorus recovery from sewage sludge Yi Liu, Haiyan Qu	1571
Time-optimal operation of diafiltration processes in the presence of fouling Martin Jelemenský, Ayush Sharma, Radoslav Paulen, Miroslav Fikar	1577
Supercritical gas recycle analysis for surge control of centrifugal compressors Sara Budinis, Nina F. Thornhill	1583
Software sensors design and selection for the production of biodiesel from grease trap wastes Efrén Aguilar-Garnica, Juan P. García-Sandoval	1589
Improving data reliability for process monitoring with fuzzy outlier detection Harakhun Tanatavikorn, Yoshiyuki Yamashita	1595
Inversion-based feedforward control design for the droop model Alexander Schaum, Thomas Meurer	1601
Effect of solvent content on controllability of extractive distillation columns Wagner B. Ramos, Marcella F. Figueirêdo, Karoline D. Brito, Romildo P. Brito	1607
High purity, high recovery, multi-component methanol distillation control Isuru A. Udugama, Tajammal Munir, Robert Kirkpatrick, Brent R. Young, Wei Yu	1613
Implementation of model predictive control in industrial gasoline desulfurization process Kornkrit Chiewchanchairat, Pornchai Bumroongsri, Veerayut Lersbamrungsuk, Amornchai Apornwichanop, Soorathep Kheawhom	1619
Maximizing profit of semi batch autocatalytic esterification process in the presence of disturbance: application of cascaded-conditional based online dynamic optimization <i>Fakhrony S. Rohman, Suhairi A. Sata, Norashid Aziz</i>	1625
,	

Contents

MIMO neural Wiener based model predictive control (NWMPC) for MTBE reactive distillation using simulated annealing- particle swarm optimization (SA-PSO)	1631
Muhamad N. Murat, Sudibyo, Norashid Aziz A real time particle size control framework in non-isothermal	1031
antisolvent crystallization processes Navid Ghadipasha, Stefania Tronci, Roberto Baratti, Jose A. Romagnoli	1637
Multivariable adaptive Lyapunov fuzzy controller for pH neutralisation process Mohd F. Zanil, Mohd A. Hussain	1643
Detection of changes in fouling behaviour by simultaneous monitoring of thermal and hydraulic performance of refinery heat exchangers <i>Emilio Díaz-Bejarano, Francesco Coletti, Sandro Macchietto</i>	1649
Dosage of filter aids in the case of pure surface filtration – an optimal control approach Michael Kuhn, Heiko Briesen	1655
Best of breed control of platinum precipitation reactors Rotimi Agbebi, Carl Sandrock	1661
Multivariate analysis of industrial scale fermentation data Lisa Mears, Rasmus Nørregård, Stuart M. Stocks, Mads O. Albaek, Gürkan Sin, Krist V. Gernaey, Kris Villez	1667
Model-based observation and design of crystal shapes via controlled growth-dissolution cycles Holger Eisenschmidt, Naim Bajcinca, Kai Sundmacher	1673
Adsorption based competitive purity control in crystallization Akos Borsos, Zoltan K. Nagy	1679
Stabilizing control for reactor/separator processes with gas and liquid recycles	
Hiroya Seki Extended VRFT method for controller design of nonlinear systems	1685
based on block-oriented model structures <i>Jyh-Cheng Jeng, Yi-Wei Lin, Min-Wei Lee</i>	1691
Linear or nonlinear? Comparing measures of nonlinearity Malik M. Tahiyat, M. A. A. Shoukat Choudhury	1697
Model predictive control for the self-optimized operation in wastewater treatment plants	1702
Mario Francisco, Sigurd Skogestad, Pastora Vega Off-line tube-based robust model predictive control for uncertain and	1703
highly exothermic polymerization processes Pornchai Bumroongsri, Veerayut Lersbamrungsuk, Soorathep Kheawhom	1709

xvi Contents

Optimization based constrained unscented gaussian sum filter Krishna K. Kottakki, Sharad Bhartiya, Mani Bhushan	1715
Systematic control structure evaluation of two-stage-riser fluidized catalytic pyrolysis processes Zhihong Yuan, Ping Wang, Mario R. Eden	1721
Novel data segmentation methods for data driven process analyses Rajesh Paul, M. A. A. Shoukat Choudhury	1727
Robust model predictive control strategy for LTV and LPV systems of the internal reforming solid oxide fuel cell Narissara Chatrattanawet, Soorathep Kheawhom, Amornchai Arpornwichanop	1733
Plantwide predictive monitoring of sulfur emissions in tail gas treatment units	
Eva M. Speelmanns, Francesco Rossi, Andres R. Leon-Garzon, Flavio Manenti	1739
Robust control of industrial propylene-propane fractionation process Cristian Patrascioiu, Nicolae Paraschiv, Anh C. Minh, Marian Popescu	1745
Improved optimization-based design of PID controllers using exact gradients Chriss Grimholt, Sigurd Skogestad	1751
Enhancing xylitol bio-production by an optimal feeding policy during fed-batch operation Oscar A. Prado-Rubio, Héctor Hernández-Escoto, Divanery Rodriguez-Gomez, Sarote Sirisansaneeyakul, Ricardo Morales-	
Rodriguez Performance evaluation of bayesian state estimators for nonlinear dae systems using a moderately high dimensional reactive distillation column model Jalesh L. Purohit, Sachin C. Patwardhan, Sanjay M. Mahajani	1757 1763
State estimation in fermentation of lignocellulosic ethanol. Focus on the use of pH measurements Miguel Mauricio-Iglesias, Krist V. Gernaey, Jakob K. Huusom	1769
Dynamic simulation and analysis of slug flow impact on offshore natural gas processing: TEG dehydration, Joule-Thomson expansion and membrane separation Lara de O. Arinelli, Ofélia Q. F. Araújo, José L. de Medeiros	1775
Contributed Papers T-6: Abnormal Events Management and Process Safety	
Automata based test plans for fault diagnosis in batch processes Chuei-Tin Chang, Wei-Chung Hsieh	1781

Contents

Modelling and monitoring of natural gas pipelines: new method for leak detection and localization estimation Xinghua Pan, M. Nazmul Karim	1787
Dynamic artificial immune system with variable selection based on causal inference Yidan Shu, Jinsong Zhao	1793
A smart safety system for chemical processes Rafael M. Soares, Argimiro R. Secchi, José C. Pinto	1799
Shape constrained splines with discontinuities for anomaly detection in a batch process Kris Villez, Jonathan Habermacher	1805
Quantifying model uncertainty in scarce data regions – a case study of particle erosion in pipelines <i>Wei Dai, Selen Cremaschi</i>	1811
Leak identification using extended Kitanidis-Kalman filter C. Ganesh, Pushkar Ballal, Mani Bhushan, Sachin C. Patwardhan	1817
Process monitoring and fault detection in non-linear chemical process based on multi-scale kernel Fisher discriminant analysis Norazwan M. Nor, Mohd A. Hussain, Che R. C. Hassan	1823
Hierarchical fault propagation and control strategy from the resilience engineering perspective: A case study with petroleum refining system <i>Jinqiu Hu, Laibin Zhang, Xi Ma, Zhansheng Cai</i>	1829
Risk analysis applied to bioethanol dehydration processes: azeotropic distillation versus extractive distillation Adriana Avilés-Martínez, Nancy Medina-Herrera, Arturo Jiménez-	
Gutiérrez, Medardo Serna-González, Agustín J. Castro-Montoya	1835

Design and Optimization of Intensified Quaternary Petlyuk Configuration

Massimiliano Errico^{a*}, Pietro Pirellas, Ben-Guang Rong^c, Juan Gabriel Segovia-Hernández^b

Abstract

From its first introduction in 1965, the Petlyuk column received a high interest in the research community. Applied for the separation of three-component mixtures, the Petlyuk column is able to perform the separation with a reduced number of equipment and with a consistent reduction of the energy consumption compared to the classical sequences with simple columns. For a three-component separation the Petlyuk arrangement is composed by a prefractionator fully coupled with a main column that performs the separation of the products. Considering the great potential of these sequences it is natural to think about a possible extension to more than three component separations. In the present work a four component case is examined. If the divided wall column configuration is considered, the presence of three walls inside the main column makes the design and the control too complex to attract the industrial interest for a real application. New intensified sequences were proposed for the separation of four-component mixtures. These configurations use a less number of columns compared to the Petlyuk configuration. The case study reported proves the potential of the alternative configurations.

Keywords: Petlyuk configuration, distillation sequencing, design, energy saving.

1. Introduction

Two milestones are recognized by the research community as meaningful improvements in separations performed by distillation. The former is the introduction of structures with a partition wall inside the shell and the latter can be considered the definition of the Petlyuk configuration. Both of them were introduced almost fifty years ago but only recently have been successfully applied into the industrial practice for a limited number of feed components. Considering three-component separations, the Petlyuk configuration is composed by a prefractionator connected by two thermal couplings to the main column where the three products are obtained. If the prefractionator is included in the main column, the corresponding divided wall column (DWC) configuration is obtained. In both cases only one condenser and one reboiler are employed. It was clearly demonstrated that for a three-component mixture the Petlyuk configuration can

^a Universitá degli Studi di Cagliari, Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Via Marengo 2, 09123 Cagliari, Italy

^b Universidad de Guanajuato, Campus Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, Guanajuato, Gto., 36050, México

^c Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, DK-5230 Odense M, Denmark massimiliano.errico@dimcm.unica.it

1368 M. Errico et al.

save up to 30 % of the energy consumption compare to the classical separation sequences (Emtir et al, 1999). Despite this evidence at least three valid hurdles contributed in the late development of Petlyuk and DWC configurations in the industrial practice. The first is the absence of recognized design methods, the second is the complexity of the structure and the third reason is the difficult in the process control. The research efforts, focused around these three points, contributed to reach more than one hundred operative DWCs around the world.

It is possible to assert that for the case of three component separations the Petlyuk and its equivalent DWC configuration has the potential of a noteworthy energy saving, different design methods are available, structure complexity are overcame by using the thermodynamically equivalent configurations and moreover the control issues are solved. It is clear that the same results are aimed for different number of feed components. Moving from three to four components the complexity of the Petlyuk and DWC structure increases and up to now only few studies are focused on the possible applications of these configurations. The aim of the present work is to propose alternative configurations to the Petlyuk/DWC configuration for a four-component separation. The benefit of the alternatives proposed is a simple design with a less or comparable total annual cost compare to the corresponding Petlyuk/DWC configuration. A case study is presented to support the new sequences.

2. Synthesis Procedure

The synthesis procedure is a systematic methodology that allows the prediction of all the alternatives generable from a sequence chosen as a reference. For a four-component mixture, the non-sharp configuration reported in Figure 1 is considered to start the generation procedure.

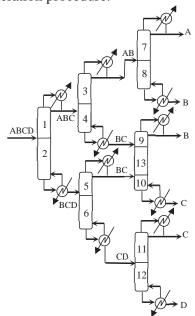


Figure 1. The six-column sequence for the fully sloppy separation of a quaternary mixture.

In this six-column sequence, usually referred as fully sloppy configuration, all the mixtures with three or more components are separated by symmetric sloppy splits. The corresponding Petlyuk configuration can be obtained in two steps: in the first one the

column sections where the same mixture or component is separated are merged. In the case considered sections 4 and 5, 8 and 9, 10 and 11 are combined reducing the number of column to three. Then, considering that in the Petlyuk configuration there is only one condenser and one reboiler independently from the number of component to be separated, all the condensers and reboilers associated to non-product streams can be substituted with a thermal coupling. The corresponding configuration is showed in Figure 2.

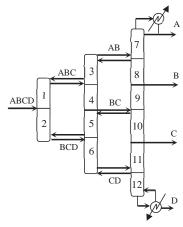


Figure 2: quaternary Petlyuk configuration

The Petlyuk configuration has three columns and five thermal couplings. Intensified sequences alternative to the Petlyuk arrangement can be obtained starting from the fully sloppy configuration of Figure 1 applying four different strategies (Rong at al, 2014):

- 1. Closed-Heat-Integration strategy to combine individual columns. This strategy is used to combine two columns by heat integration between a condenser and a reboiler co-producing a same product. This will reduce the number of columns.
- 2. Thermal coupling strategy to eliminate a condenser or a reboiler. This strategy is used to eliminate a condenser or a reboiler associated to a mixture of two or more components. This will reduce the number of heat exchangers.
- 3. Rearrangement of column sections strategy to generate thermodynamically equivalent structures. This strategy is used to recombine the column sections in a thermally coupled configuration through movement of the movable column sections. This will generate the thermodynamically equivalent structures which have different columns than the original thermally coupled configuration.
- 4. Elimination of the single-section-side columns strategy to produce the intensified distillation systems. For a thermally coupled configuration, there are thermodynamically equivalent structures in which there are single-section-side columns. This strategy is used to eliminate the single-section-side columns to generate the intensified distillation systems with fewer columns.

Applying the four point strategy presented the five configurations reported in Figure 3 are obtained. In particular the configuration reported in Figure 3(a) is obtained applying the strategy 1 to merge section 8 with section 9 and section 10 with section 11, then following the strategy 2 the condenser associated to the submixture ABC and the reboiler associated to the submixture BCD are substituted by thermal couplings. Strategy 3 is used to rearrange section 3 above section 1 and section 6 below section 2, finally single sections 4 and 5 are eliminated as indicated in the strategy 4. Similarly the configurations reported in Figure 3 (b-e) are obtained. Analyzing all the configurations generated is possible to notice that are all composed by two columns, moreover in

1370 M. Errico et al.

sequences 3(b) and 3(d) the stream C is obtained twice, in sequences 3(c) and 3(e) the component B is recovered in two separate streams. Only the sequence 3(a) is associated to the minimum number of streams.

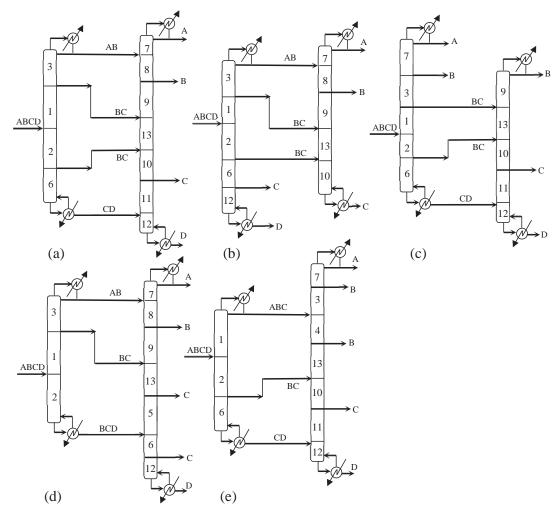


Figure 3: The intensified distillation alternatives for quaternary Petlyuk configuration

3. Case Study and Comparison Indexes

To test the applicability of the new intensified sequences, a case study has been considered. The composition and the product purity targets are shown in Table 1.

Table 1: feed composition and purity target

	Component	Feed composition [mol frac.]	Purity target [mol frac]
A	Butane	0.05	0.990
В	Hexane	0.10	0.970
C	Heptane	0.10	0.974
D	Nonane	0.75	0.997

A saturated liquid feed flowrate of 100 kmol h⁻¹ is considered. All the configurations were simulated by means of Aspen Plus V8.0. The NRTL thermodynamic method was used and sieve trays columns were considered. The column pressure was optimized for

each column considering the possibility to use water in the condenser. The minimum temperature for the columns overhead vapor was defined to 323K.

Three different indexes were selected for the configurations comparison: the total annual cost, the thermodynamic efficiency and the carbon dioxide emission. The Total Annual Cost (TAC) is obtained as a sum of the operative and the annualized capital costs as reported in Eq. (1).

$$TAC = \sum \left[\left(\frac{Capital\ Cost}{Time\ of\ Investment} \right) + \left(Operative\ Costs \right) \right] \tag{1}$$

The operative costs were evaluated taking into account the cost of the water and the vapor in the condenser and reboiler respectively. The costs of the auxiliary fluids were obtained from Rev et al., 2001. The capital costs were considered as the sum of the costs of the condensers, reboilers, column shell and trays, evaluated according to the Guthrie's method reported in Turton et al., 2004. A mean investment time of 10 years was used to annualize the capital costs. The second index considered is how efficient the energy is being used. This information is expressed by the thermodynamic efficiency (η) evaluated as reported by Seader et al., 2009 and defined in Eq. (2)

$$\eta = -W_{min}/(-LW - W_{min}) \tag{2}$$

where W_{min} is the minimum work of separation and LW the lost work.

The last index used to compare the different configurations is the carbon dioxide emission (m_{co2}) since as a greenhouse gas is directly related to the global warming. The amount of carbon dioxide emitted was evaluated by the Eq. (3) following the method reported by Gadalla et al., 2005:

$$m_{CO_2} = \left(\frac{Q_{FUEL}}{NHV}\right) \left(\frac{\%C}{100}\right) \alpha \tag{3}$$

where Q_{fuel} is the heat generated by the combustion reaction, NHV the net heating value of a fuel with a carbon content of %C and α the ratio of molar masses of CO_2 .

4. Simulations and results

In order to get the design parameters of all the alternative sequences, the fully sloppy configuration of Figure 1 was first simulated using the short-cut method of Underwood-Gilliland-Winn already implemented in Aspen Plus. The parameters obtained were used to initialize the stage-to-stage rigorous method RadFrac. The number of stages, feed location, reflux ratio were then optimized for the minimum energy consumption.

The design of the Petlyuk configuration was performed considering the correspondent among the column sections functionality (Errico et al., 2014). In this way once the design of the fully sloppy configuration of Figure 1 was obtained the configuration parameters were transposed to the analogous sections. The thermal coupling the flowrates were defined as the minimum possible value to assure the products purity targets. Following the same design methodology cited for the Petlyuk configuration, the alternative configurations reported in Figure 3 have been simulated using the correspondence of column functionality. Only the results for the configuration of Figure 3(a) are reported in Table 2 since, for the composition cases considered, was most convenient from the energy consumption point of view. Among all the alternatives predicted, the one in Figure 3(a), is the only sequence that performs the separation of the middle components once.

1372 M. Errico et al.

Table 7.	Segmences	comparison
rabic 2.	bequences	comparison

	Petlyuk	Fig. 3(a)
TAC [\$/y]	433	432
η [%]	47	52
CO2 [kg/h]	601	598

5. Conclusions

The work presented a new space of alternatives to the Petlyuk configuration for quaternary separation. The motivation of the work starts from the interest in the Petlyuk configuration due to its potential in energy reduction. Anyway for a four-component separation, the complexity of the design and control limit its application. A synthesis methodology is presented to generate a complete space of alternatives with a simpler design. For the case considered, among all the sequences it was obtained once with similar or better performance compare to the Petlyuk configuration. It is possible to conclude that the alternatives proposed are a valid alternative to the complexity of the Petlyuk configuration but still with the same benefit of less energy consumption.

References

- M. Emtir, E. Rev, P. Mizsey, Z. Fonyò, 1999, Comparison of integrated and coupled distillation schemes using different utility prices, Computers & Chemical Engineering, 23, S799-S802
- M.Errico, B.-G.Rong, C.E.Torres-Ortega, J.G.Segovia-Hernandez, 2014, The importance of the sequential synthesis methodology in the optimal distillation sequence design, Computers and Chemical Engineering, 62, 1-9
- M.A. Gadalla, Ž. Olujić, P.J.Jansens, M. Jobson, R. Smith R., 2005,. Environ. Sci. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems Technol, 39, 6860-6870
- E. Rev, M. Emtir, Z. Szitkai, P. Mizsey, Z. Fonyo, 2001, Energy Savings of Integrated and Coupled Distillation Systems, Computers & Chemical Engineering, 25, 119-140
- B.-G. Rong, M. Errico, J.G. Segovia-Hernandez, 2014, New intensified distillation systems for quaternary Petlyuk configuration, 24th European Symposium on Computer Aided Process Engineering-ESCAPE 24
- W.D. Seider, J.D. Seader, D.R. Lewin, S. Widagdo, 2009, Product and Process Design Principles. Synthesis, Analysis and Evaluation, John Wiley and Sons, Inc. Asia
- R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, Analysis, 2004, Synthesis and Design of Chemical Process, Second ed., Prentice Hall: USA